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Abstract —The need for high-resolution distributive dosimetry' demands
a numerical method capable of handling finely discretized, arbitrarily
inhomogeneous models of biological bodies. At present, two of the most
promising methods in terms of numerical efficiency are the fast-Fourier-
transform conjugate gradient method (FFT-CGM) and the finite-dif-
ference time-domain (FD-TD) method. In this paper, these two methods
are compared with respect to their ability to solve the 2-D lossy dielectric
cylinder problem for both the TM and TE incident polarizations. Substan-
tial errors are found in the FFT-CGM solutions for the TE case. The
source of these errors is explained and a modified method is developed
which, although inefficient, alleviates the problem and illuminates the
difficulties encountered in applying the pulse-basis method of moments to
biological problems. In contrast, the FD-TD method is found to yield
excellent solutions for both polarizations. This, coupled with the numerical
efficiency of the FD-TD method, suggests that it is superior to the
FFT-CGM for biological problems.

I. INTRODUCTION

N THE FIELD of bioelectromagnetics, there exists a

need for numerical methods capable of computing
high-resolution specific absorption rate (SAR) distribu-
tions in biological bodies exposed to RF electromagnetic
fields. Applications include the quantification of environ-
mental hazards (RF dosimetry) and the design and evalua-
tion of hyperthermia applicators for the treatment of
cancer. Numerical simulation of these problems requires
algorithms capable of computing the resultant internal
electric field induced inside an arbitrarily inhomogeneous
lossy dielectric body exposed to a known incident electric
field. Once the internal electric field (JE]) is found, the
specific absorption rate distribution (SAR = 10|E|*) can
be computed. Analytic methods exist for the solution of
simple geometries such as concentrically layered circular
cylinders [1] and spheres [2], [3], and numerical methods
have been developed for spheroids [4] and bodies of revo-
lution [5]. The use of such methods is limited to the
approximation of whole-body average SAR, layering ef-
fects, etc., due to the inability of these methods to take
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into account the complex external shape and internal
structure of the human body.

A number of methods have been developed to deal with
arbitrary inhomogeneity, and it is not the purpose of this
paper to survey them all. Instead, this paper concentrates
on two methods which we feel hold the most promise for
handling high-resolution biological models due to their
storage and computation efficiency. These' are the fast-
Fourier-transform conjugate gradient method (FFT-CGM)
and the finite-difference time-domain (FD-TD) method.
Here, these two methods are evaluated for their ability to
solve the 2-D problem of an infinite lossy dielectric cylin-
der exposed to both TM and TE incident polarizations.
Two-dimensional problems were chosen for two reasons.
First, 2-D problems are less computationally involved than
3-D problems. This allows many test runs to be made for a
variety of dielectric properties, frequencies, and cylinder
sizes. Second, analytic solutions exist for homogeneous
and coaxially layered circular cylinders illuminated by TM
and TE incident plane waves. This allows a direct check on
the accuracy to which the numerical methods can predict
the internal electric fields.

The first method developed to solve the electric-field
integral equation for the general 2-D dielectric cylinder
was Richmond’s [6], [7]. This approach uses the method of
moments (MoM) with the pulse basis and point matching
to discretize the integral equation into a linear system of
equations that is then solved by matrix inversion. This
method was extended to the general 3-D problem by
Livesay and Chen [8] and has been applied to realistic
models of man by Hagmann er al. [9]. A serious limitation
of the traditional MoM is the need to invert a large matrix
equation. This requires order N computation and order
N? storage, where N is the number of pulse-basis func-
tions (cells) used to describe the body. This has limited the
application of this method to relatively crude 180-1100-cell
models [10].

In order to extend the resolution of the models that can
be used in the integral equation method, Bojarski [11]
developed the K-space method, which exploits the con-
volutional form of the electric-field integral equation by
the use of the fast-Fourier-transform (FFT) algorithm.
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This iterative approach reduces the storage and computa-
tion per iteration requirements to order N and N log, (N),
respectively. A related method, the stacked spectral itera-
tion method (SSIT) of Kastner and Mittra [12], further
reduces the computation requirement by decomposing the
3-D problem into a stack of 2-D problems. Difficulties
associated with the convergence of these iterative methods
prompted the development of the FFT-CGM [13], [14]. In
this approach, the MoM with pulse basis and point match-
ing is used to discretize the integral equation into a linear
system that inherits the convolutional form of the integral
equation. The linear system is then solved iteratively by
the conjugate gradient method [15] using the discrete con-
volution theorem and the FFT algorithm to maintain order
N storage and order N log, (N) computation per iteration
requirements.

A recent debate [16], [17] concerning the accuracy of
pulse-basis MoM (PB-MoM) solutions has cast serious
doubt on the applicability of this method to biological
problems. Because the FFT-CGM is nothing more than an
efficient means of solving the PB-MoM linear system, it is
also suspect. It will be demonstrated in this paper that
serious errors result when the FFT-CGM is applied to the
2-D lossy dielectric cylinder exposed to the TE incident
polarization, while for the TM case, very accurate solu-
tions are obtained. A major purpose of this paper is to
explain the source of this problem by presenting a mod-
ified PB-MoM that provides excellent solutions for the TE
case. Unfortunately this modified approach does not allow
for the use of the FFT and thus requires order N2 storage
and order N? computations. In addition, the modified
PB-MoM requires detailed modeling of all dielectric inter-

faces. This complicates the creation of the model consider- *

ably compared with the simple volume-averaged models
that have been used. Nonetheless, the success of this
method illuminates the source of the problems that have
been encountered in the application of the PB-MoM and
casts serious doubt on the solutions obtained in the past
for simple block models of man.

The FD-TD method originated by Yee [18] and ex-
tended by Umashankar, Taflove, and Morris [19], [20]
consists of solving a set of finite difference approximations
to the time-dependent Maxwell’s equations. The method

enjoys significant advantages over the FFT-CGM in terms |

of computation and storage requirements and will be
shown to provide excellent solutions for both the TM and
TE polarizations. In addition, the FD-TD method does not
require accurate modeling of the dielectric interfaces. The
ability of this method to solve high-resolution biological
models has been demonstrated in the application of the
method to a realistic model of the isolated human eye [21].
Based on the results to follow, we feel that the FD-TD
method is superior to the FFT-CGM for solving high-reso-
Iution bioelectromagnetic problems.

II. DESCRIPTION OF THE METHODS

The FD-TD method consists of solving a set of finite
difference approximations to the time-dependent Maxwell’s
equations. A plane wave, initially not touching the body, is
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Fig. 1. Geometry of the 2-D TE cylinder problem and the constant

increment discretization grid used in the FFT-CGM.

propagated toward the body by time stepping with the
finite difference equations. The wave is followed as it
interacts with the body until the sinusoidal steady state is
reached. Satisfaction of the radiation condition is equiv-
alent to ensuring that the scattered field is not reflected
back toward the body by the boundaries of the grid. This
boundary condition is enforced by applying a finite dif-
ference operator at the grid boundary that selects
outward-moving waves [22]. Use of this second-order-accu-
rate boundary condition is claimed to ensure +2.5-percent
uncertainty in the internal field magnitudes [20]. The
FD-TD calculations presented in this paper were per-
formed using a computer program provided by A. Taflove.
A detailed description of the theory of the FD-TD method
and the program can be found in [23].

The FFT-CGM is described in [13] and [14] for the TM
illumination of infinite dielectric cylinders and we derive
here the method for the TE incident polarization. In Fig. 1,
an infinite cylinder of arbitrarily inhomogeneous, lossy
dielectric material of constant cross section S is il-
luminated by a TE-to-z incident field. From Maxwell’s
equations with exp(jwt) time dependence, the 2-D TE
electric-field integral equation can be derived as in
Harrington [24, p. 59]:

E/(p)

Il

E(5)+ 263 [[(e2(7)-DE ()
~HP(kolp~ p']) ds’

+§v [[v" () -DE(5)]

-HP (kolp— p'l) ds’ (1)

where

E, transverse total electric field,
E! transverse incident electric field,
e* complex relative permittivity,
k, free-space propagation constant.

Suppose that the cross section is composed of N homo-
geneous subregions. The divergence of the polarization
current in the second integral is zero inside such a region
and impulsive at dielectric interfaces. This collapses the
second integral into a line integral around all dielectric
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interfaces, giving [33]

EF) = E()+ 43 % (-1
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[ E@) - HP (ko5 -F) A (2)

where

S %

complex relative permittivity of region n,
outward-directed unit normal vector,
surface area of region n,

boundary of region n.

The FFT-CGM is based on the observation that the 2-D
electric-field integral equation (1) has the form of a 2-D
convolution integral. The idea is to discretize the equation

=Qh=)m

Ei(n,m)
E}(n,m)

Ey(n,m) o

in such a way as to preserve this form in the resulting
linear system obtained by the application of the method of
moments using the pulse basis and point matching. To this
end, a square grid of constant increment A is placed over
the surface S, as shown in Fig. 1. If the electric field and
dielectric properties in each cell are assumed to be con-
stant (pulse basis) and equality is enforced at the cell
centroids (point matching), then there results from (2) the
linear system of equations
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J
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CA
where

SA surface area of a cell centered at the origin,
CA  boundary of SA.

The linear system (3) is in the form of a 2-D discrete
convolution since
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In other words, since an equally spaced square grid has
been used to discretize (1), the resulting linear system has
inherited the convolutional form of the integral equation.

The first integral in (3) is approximated by replacing the
square cell by a circle of equal area and evaluating the
integral analytically. If the second integral is approximated
in the same way, then the resulting method is equivalent to
that originally used by Richmond [7] for the TE cylinder
problem. It has been suggested by Hohmann [25] that the
second integral should be evaluated by numerical quadra-
ture along the square boundary. We have found, as dis-
cussed by Hagmann er al. [26] for the 3-D case, that
subdivision of the cell into smaller cells and summing the
Richmond approximations for these subcells converge to
the values obtained by Hohmann’s approach with less
computational effort. This formulation is referred to in the
literature [26] as the high-frequency Hohmann method
(HFH) since it is a high-frequency modification of a
method originally used by Hohmann [25] for geophysical
problems. :

Upon approximating the integrals in (3), the linear
system can be written in the form

(ek ~1)E, (L. k) ©)

In this form, the linear system is clearly seen to be of the
form of four coupled 2-D discrete convolutions. This form
can be exploited by use of the discrete convolution theo-
rem and. the 2-D FFT algorithm to provide a means of
computing the matrix product and its conjugate transpose
in a number of operations proportional to N log,(N)
versus N2 for direct summing, where N is the number of
cells used to model the body. In addition, matrix storage is
not needed since only the FFT’s of the arrays A, B and C
need to be stored. This reduces the storage requirement
from order N? for traditional MoM to order N. This
efficient means of computing the matrix products is then
used to implement the conjugate gradient method (CGM)
for the iterative solution of the linear system (5). This
method of solving (5) introduces no additional error over
more traditional methods such as LU decomposition since
the convolutions in (5) can be computed without wrap-
around aliasing by zero padding to twice the dimension of
the scatterer [27, p. 110]. Recently, the CGM has become a
popular means for solving linear systems encountered in
the application of the MoM [28]-[30]. In these methods,
the convolutional property of the linear system is not
exploited by use of the FFT algorithm, and as a result,
these methods require order N2 computations per iteration
and order N? storage. It should be mentioned that the
CGM approach proposed by Sultan and Mittra [30] re-
quires order N2 computations but a storage requirement
proportional to N since the matrix elements are extracted
from a lookup table as needed.

Table 1 summarizes the storage and computation re-
quirements of the FFT-CGM and the FD-TD method for
the TE case. The FD-TD requires about 10 percent of the
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TABLEI
STORAGE AND COMPUTATION COMPARISON FOR THE 2-D TE CASE

FFT-CGM | FD-TD

Multiplies | 64N log,(N) 2N
Adds 64N logx(N) 10N
Storage 64N N

Computations for the FFT-CGM are for one CGM iteration. The
FD-TD values are for one time step. N is the number of cells used in the
model.

storage needed by the FFT-CGM. Also, considerably less
computation per iteration is needed for the FD-TD method.
The comparison presented in Table I is not entirely accu-
rate since the computations for the FFT-CGM are for one
conjugate gradient iteration while the values for the FD-TD
are for one time step. For the test cases to follow, the
number of iterations and time steps needed will be given
for a more accurate comparison of the methods.

III. TrsT CASES

Fig. 2 illustrates the model used in the test cases that
follow. A coaxially layered circular cylinder is modeled by
a 21X 21 square grid with an inner layer defined by an
11X 11 grid for a total of 349 cells. Also shown are the TM
and TE incident plane wave polarizations considered. Fig.
3 compares the results obtained with the FFT-CGM and
the FD-TD method for the case of a homogeneous muscle
tissue cylinder exposed to a 100-MHz TM polarized plane
wave of amplitude 1 V/m. The values for the dielectric
properties of biological tissue were taken from [31]. The
solutions are compared with the exact solution along the x
axis from front to back and on the y axis from the center
to the top of the cylinder (the solution is symmetric in y).
The exact solution represented by the continuous line was
computed analytically as described in [32]. Both numerical
solutions agree favorably with the exact solution for this
case.

Fig. 4 shows the results for a two-layer cylinder with an
inner layer of muscle and an outer layer of fat for an
incident frequency of 100 MHz. Fig. 5 shows the compari-
son for a homogeneous muscle cylinder for a frequency of
300 MHz. For these cases also, both methods agree well
with the exact solution.

The TM results displayed here represent only a small
sample of the cases that have been considered. We have
found that both methods give good solutions for the TM
polarization for a wide variety of layering geometries and
frequencies up to 1 GHz. The sampling density required to
obtain an accurate solution is on the order of five to ten
samples per internal wavelength.

Fig. 6 compares the two methods for the case of a
100-MHz TE polarized incident plane wave illuminating a
homogeneous muscle cylinder. As before, the methods are
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Fig. 2. Geometry of the layered circular cylinder test case. Outer layer
radius =15 cm, inner layer radius = 7.9 cm.

TABLE II
ITERATION AND COMPUTATION REQUIREMENTS FOR THE TEST
PROBLEMS OF FIGS. 3-8

FD-TD

Operations
X107

FFT-CGM
Iterations

FFT-CGM

Operations
x107°

FD-TD
Time-steps

Frequency
and Fig.
Polarization
100 MHz
™ Fig.3 4 1.8
Homogeneous
100 MHz
™ Fig4 5 23
Layered
300 MHz
™ Fig.5 9 4.1 300 37
Homogeneous
100 MHz
TE Fig.6 300 550
Homogeneous
100 MHz
TE Fig.7 300 550
Layered
300 MHz
TE Fig.8 300 550 300 37
Homogeneous

1500 184

1500 184

1500 184

1500 184

The operations values are the sum of the real adds and real multiplies.

compared with the exact solution along the x and y axes.
The E, field is zero on the x axis due to symmetry. For
this case, the FD-TD solution agrees very favorably with
the exact solution. In contrast, severe errors are present in
the FFT-CGM solution. Notice the erratic behavior of the
solution in general and in particular the large errors in the
tangential components at the air—dielectric interface.

Fig. 7 shows the TE results obtained for the muscle—fat
layered case. An interesting feature of this case is the fact
that both methods correctly predict the jump discontinuity
in E, along the y axis. As before, the FD-TD solution is
superior to the FFT-CGM solution. As in the homoge-
neous case, the FFT-CGM solution is not as smooth as the
FD-TD solution, and there is considerable error in the
tangential component of the solution at both dielectric
interfaces. Notice that the FFT-CGM method predicts
large discontinuities in the tangential component of the
field at dielectric interfaces. Fig. 8 shows the comparison
for the 300-MHz homogeneous case. Again the FD-TD
solution agrees very well with the exact solution. Very
large errors are seen for the FFT-CGM solution. Notice
the very erratic, oscillatory behavior of the computed E,
field on the x axis. An explanation of this behavior will be
given shortly.
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Table II displays the number of FFT-CGM iterations
and FD-TD time steps and the total number of real
operations required to obtain the solutions of Figs. 3-8.
For numerical stability of the FD-TD iterations, the time
step duration 8, must satisfy

8X
26,

9, <

where &, is the cell size and C; is the velocity of light. For
adequate convergence to the steady state, the passage of
two to three wavelengths is required and so the total

number of time steps needed (for 2.5 wavelengths) is
5A

6

X

N>

Thus, the number of time steps needed for convergence is
inversely proportional to the electrical size of the cell. For
this reason, the FD-TD method requires fewer time steps
as the frequency is increased for a given cell size.

While the number of time steps required for the FD-TD
method to converge is known a priori from simple consid-
erations, the number of iterations required for the FFT-
CGM is not so well defined. For the TM case, the CGM
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Fig. 7. TE test case no. 2. Layered muscle—fat cylinder. Frequency =100 MHz; ¢,=72, ¢,=75; ¢,=09 S/m,
g, =0.048S/m,

converges very rapidly in far fewer iterations than the
number of unknowns, making the FFT-CGM competitive
with the FD-TD for this polarization. For the TE case,
however, the CGM requires a number of iterations on the
order of the number of unknowns. It is well known that
the number of iterations needed for convergence of the
CGM is equal to the number of independent eigenvalues
of the matrix [28]. Apparently, many of the eigenvalues of
the TM matrix are degenerate or nearly so, resulting in
very rapid convergence. For the TE matrix, it appears that

the eigenvalues are mostly independent, thus, the number
of iterations required is on the order of the number of
unknowns. This, coupled with the greater computation per
iteration required, makes the FFT-CGM much less effi-
cient than the FD-TD method for the 2-D TE and, pre-
sumably, the 3-D cases.

In order to shed some light on the convergence problems
encountered in the use of the pulse-basis MoM approach
to the TE problem, a series of increasingly finer discretiza-
tions of the type shown in Fig. 2 were considered. Fig. 9
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Fig. 8. TE test case no. 3. Homogeneous muscle cylinder. Frequency = 300 MHz; €,) =¢,, = 54; 6, =0, =14 S/m.
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Fig. 9. Discretization series test cases for the FFT-CGM. Frequency =100 MHz, radius =15 cm, €, =72, ¢ = 0.9 S/m.
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Fig. 10. Volume-averaged discretization series test cases for the FFT-CGM. Frequency = 100 MHz, radius =15 cm, €, = 72,
6=09S/m.

shows the results obtained for 37, 177, 421, and 749 cell
block models of a homogeneous circular cylinder of muscle
tissue exposed to a 100-MHz TE plane wave. As the
number of cells is increased, the model is refined in
the sense that the surface area of the model converges
to the area of the circular cross section. Note, however,
that the arc length and shape of the boundary do not
converge to that of the circular cylinder for increasingly
finer discretizations. This inaccurate modeling of the
air—dielectric interface will be shown in the next section to
be the cause of the errors encountered in the previous TE
solutions.

It might be suggested that more rapid convergence of
the model geometry and correspondingly better solutions
might be obtained by replacing the block model of Fig. 2
with an air—dielectric volume-averaged model. In Fig. 2, a
cell was considered to be either entirely inside or outside
the body, and it could be argued that this reinforces the
jagged shape of the model boundary. A different approach
would be to assign to each cell a dielectric constant corre-
sponding to the average dielectric constant enclosed by the
volume of the cell. This volume-averaging approach is
actually what has been used in practice. For example, the
180-cell man model developed by Hagmann et al. [9] is a

volume-averaged model. To test the effect of this modifica-
tion, volume-averaged models for the TE problems of Fig.
9 were considered. Fig. 10 shows the results obtained using
volume averaging. These solutions differ only slightly from
those of Fig. 9. The characteristics and magnitude of the
error in the volume-averaged solutions are essentially the
same as for the model of Fig. 2. Thus, we find no benefit
in this modification.

Careful examination of Figs. 9 and 10 reveals several
interesting features of the block model MoM solutions.
Notice that as the number of cells is increased, the solution
tends to converge to a final shape. In addition, the whole-
body average SAR tends to converge to a value about 25
percent larger than the exact value. Although the MoM
solutions do appear to converge to a final shape and the
SAR seems to converge to a value close to the correct one,
the solutions deviate significantly from the exact solution
in terms of the interior distribution even though the sam-
pling density has reached 28 samples per internal wave-
length. This result indicates that the apparent convergence
of the whole-body average SAR is not an indication that
the internal SAR distribution is accurate.

The source of the overall roughness of the solutions in
Figs. 9 and 10 can be explained by considering the results
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in Fig. 11 for square cylinders. The only difference be-
tween the models used in Fig. 11 and Fig. 9 is that the
circular cylinder block models have been filled out into
squares—a shape that the square-cell block models fit
exactly in area, boundary shape, and boundary length.
Notice that the MoM solutions are now very smooth.
Clearly, the source of much of the erratic behavior of the
previous TE results is due to the inaccurate modeling of
the dielectric boundary by the block models. To see why
this is true, consider (2) for the case of a single homoge-
neous region. The second integral in this equation becomes
a single line integral about the boundary of the body. This
suggests that the integral equation solution is very sensitive
to the accuracy of the boundary representation. Block
models, such as Fig. 2, converge in terms of surface area as
the number of cells is increased but the arc length and
shape of the boundary does not. The second integral in (2)
is an integration of the polarization charge at the interface
between two different dielectrics. It is this charge that
accounts for the jump discontinuity in the normal compo-
nent of the electric field at such an interface; thus, the
geometry of the boundary must be modeled accurately to
ensure proper satisfaction of this boundary condition.

The shortcomings of the pulse-basis MoM applied to the
TE-illuminated dielectric cylinder were first pointed out by
Harrington [24, p. 59] in a discussion of the results ob-
tained by Richmond {7] for the TE cylinder problem.
Harrington suggested that the errors encountered in com-
puting the scattered power pattern of a coaxial dielectric
shell were due to the fact that the pulse-basis function is
not in the domain of the TE integro-differential operator.
He further suggested that the pulse-basis solution should
not be expected to converge to the exact solution as the
number of pulses describing the cylinder is increased. In
the next section, it will be shown that convergence can in
fact be obtained with the pulse basis if the cell structure of
the model is carefully designed and the matrix elements
are evaluated correctly.

A number of alternative formulations have been sug-
gested to alleviate these difficulties. These approaches gen-
erally involve the use of higher order basis functions, e.g.
linear and rooftop functions. Hill et al. [33] developed a
linear basis Galerkin method for a quasi-static approxima-
tion to the TE electric-field integral equation. This ap-
proach was found to vield excellent solutions for homoge-
neous and coaxially layered cylinders of biological tissue.
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Recently, this approach has been extended to the general
3-D problem by Tsai [34]. Solutions obtained with this
method have been found to agree well with the exact
solution for homogeneous and concentrically layered
spheres. Another method, developed by Schaubert et al.
[35], uses the so-called rooftop functions which are linear
in the normal direction and constant tangentially. This
allows the normal D continuity to be enforced by con-
straint. The solutions obtained for spheres with this method
are considerably superior to block model solutions. Two
points stressed in these papers -are that one, the cell
structure of the model should accurately represent the
dielectric interfaces and two, the linear basis is superior to
the pulse basis in that it is capable of approximating the
cell-to-cell boundary conditions more accurately. Both of
these methods suffer, however, from two important limita-
tions. The larger number of unknowns per cell results in a
very large matrix equation to be solved. This makes the
solution of high-resolution biological models beyond the
reach of present-day computers. The other complication
involves the creation of the model itself. The need to
model interfaces accurately requires that the cell structure
fit the complicated shape of the exterior boundary and the
interior organs using arbitrary polyhedral cells. Specifica-
tion of such a model thus requires a great deal of effort
compared with the simple volume-averaged block models.
At present, this appears to us to be a fundamental limita-
tion of integral equation approaches. The FD-TD method,
in contrast, does not seem to require accurate boundary
specification. For this method, specification of the dielec-
tric properties on a regular grid of points seems to be
sufficient information to produce accurate solutions. In the

next section, two modifications are made to the pulse-basis
block model MoM that have been found to alleviate the
convergence problems without going to a higher order
basis function.

IV. A Mobirieb PuLse-Basis MoM (MHFH)

To support the previous conjectures regarding the cause
of the poor performance of the pulse-basis block model
MoM, we now present two modifications that we have
found to alleviate this problem for the TE case. The first
modification was suggested in the last section—replace the
block model with a model composed of irregularly shaped
cells so that the curved boundaries are modeled accurately.
An example of this improvement is shown in Fig. 13 for a
circular cylinder. Two serious disadvantages resulting from
this modification are one, as discussed previously, the
creation of such models is considerably more difficult than
the block models, and two, since the discretization grid is
no longer square and of constant increment, the linear
system no longer inherits the convolutional form of the
integral equation. Thus, the discrete convolution theorem
cannot be used and the order N? storage and order N3
computation of matrix inversion are required. The second
modification involves the accurate numerical evaluation of
the second integral in (2). This integral represents an
integration of the polarization charge that exists at the
interface between two homogeneous regions with different
dielectric properties. It is this polarization charge that
accounts for the discontinuity of the normal component of
the electric field at the interface. If a homogeneous region
is subdivided into N subregions and the line integrals are
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performed about the subregion boundaries, the continuity
of normal E at the interface between two such subregions
will ensure that the two integral contributions cancel so
that the charge source exists only at the air—dielectric
interface. The problem with the pulse basis is that, due to
the assumption of constant fields, a jump discontinuity
exists at all cell boundaries regardless of whether an actual
dielectric discontinuity exists. This results in the presence
of fictitious charge sources in the interior of the homo-
geneous regions. The second suggested modification is
to ignore this deficiency of the pulse basis by simply
not including the line integral contributions from cell
boundaries for which there is not an actual dielectric
discontinuity. Henceforth, this second modification shall
be referred to as the modified high-frequency Hohmann
method (MHFH) to differentiate it from the high-frequency
Hohmann method (HFH) which includes the fictitious
charge sources.

To examine the effects of these modifications, consider
Fig. 12. Shown is a 208-cell block model of a homogeneous
circular cylinder. One plane of symmetry has been used (as
illustrated in the figure) to reduce the matrix size. The
linear systems resulting from the HFH and MHFH were
inverted by LU decomposition. The plots compare the two
solutions with the exact solution as in previous examples.
Notice that both solutions deviate significantly from the
exact solution. Thus, the removal of fictitious charge alone
is not sufficient to correct the solution.

Fig. 13 shows a smooth model created to satisfy the first
suggested modification. The plots compare the solutions
obtained with the HFH and MHFH methods. Clearly,
modification of the boundary shape alone is not sufficient
to correct the errors in the MoM solution. Notice, how-
ever, that if both modifications are made, the MoM solu-
tion agrees with the exact solution with very little error.

For an inhomogeneous test case, a 212-cell model of a
coaxially layered circular cylinder was created, as shown in
Fig. 14. Notice that both the exterior air—dielectric inter-
face and the interior layer interface are accurately repre-
sented by the model. For the solution shown, the inner
layer was assumed to be muscle surrounded by an outer
layer of fat. Such a discontinuity represents the most
severe case found in the human body. As in the homoge-
neous case, the MHFH method yields excellent agreement
with the analytic solution. Note in particular the ability of
the method to predict the large discontinuity in the E,
field at the interface along the y axis.

V. CONCLUSIONS

It has been shown that serious errors exist in solutions
obtained using the HFH-MoM applied to block models of
lossy dielectric cylinders for the TE polarization. The cause
of these errors and their remedy have been demonstrated
by the development of a modified HFH-MoM. In this
method, the cell structure is designed to accurately model
all dielectric interfaces. Also, the fictitious line charge
sources present in the traditional HFH-MoM have been
removed. Unfortunately, these modifications prevent the
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resulting linear system of equations from inheriting the
convolutional form of the TE integral equation. This pre-
vents the use of the FFT-CGM and thus requires the order
N? storage and order N3 computation of matrix inversion.
Also, the need to include accurate interface modeling
drastically increases the effort required to create models of
complicated inhomogeneity as opposed to the simple
volume-averaged models used in the past.

In contrast, the FD-TD method has been shown to yield
excellent solutions for both the TM and TE polarizations
without the need for accurate boundary information. This
fact, coupled with the extreme efficiency in storage and
computation requirements, suggests that the FD-TD
method has great potential for solving the high-resolution
models needed in bioelectromagnetics.
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