
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TI?CHNIQUES, VOL. MTT-35, NO. 4, APRIL 1987 383

Comparison of the FFT Conjugate Gradient
Method and the Finite-Difference

Time-Domain Method for the
2-D Absorption Problem

DAVID T. BORUP, DENNIS M. SULLIVAN, AND OM P. GAND~I, FELLOW, IEEE

Abstract —The need for high-resolution distributive dosimetry’ demands

a numericaf method capable of handling finely dkcretized, arbkrarily

inhomogeneous models of biological bodies. At present, two of the most

promising methods in terms of numericaf efficiency are the fast-Fourier-

transform conjugate gradient method (FFT-CGM) and the finite-dif-

ference time-domain (FD-TD) method. In this paper, these two methods

are compared with respect to their ability to solve the 2-D Iossy dielectric

cylinder problem for both the TM and TE incident polarizations. Substan-

tial errors are found in the FFT-CGM solutions for the TE case. The

source of these errors is explained and a modified method is developed

wfdc~ although inefficient, alleviates the problem and illuminates the

difficulties encountered in applying the pulse-basis method of moments to

biological problems. In contrast, the FD.TD method is found to yield

excellent solutions for both polarizations. Tfds, coupled with the numencaf

efficiency of the FD-TD method, suggests that it is superior to the

FFT-CGM for biological problems.

I. INTRODUCTION

INTHE FIELD of bioelectromagnetics, there exists a

need for numerical methods capable of computing

high-resolution specific absorption rate (SAR) distribu-

tions in biological bodies exposed to RF electromagnetic

fields. Applications include the quantification of environ-

mental hazards (RF dosimetry) and the design and evalua-

tion of hyperthermia applicators for the treatment of

cancer. Numerical simulation of these problems requires

algorithms capable of computing the resultant internal

electric field induced inside an arbitrarily inhomogeneous

lossy dielectric body exposed to a known incident electric

field. Once the internal electric field (]~]) is found, the

specific absorption rate distribution (SAR = ~u IEl 2, can

be computed. Analytic methods exist for the solution of

simple geometries such as concentrically layered circular

cylinders [1] and spheres [2], [3], and numerical methods

have been developed for spheroids [4] and bodies of revo-

lution [5]. The use of such methods is limited to the

approximation of whole-body average SAR, layering ef-

fects, etc., due to the inability of these methods to take
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into account the complex external shape and internal

structure of the human body.
A number of methods have been developed to deal with

arbitrary inhomogeneity, and it is not the purpose of this

paper to survey them all. Instead, this paper concentrates

on two methods which we feel hold the most promise for

handling high-resolution biological models due to their

storage and computation efficiency. These ~are the fast-

Fourier-transform conjugate gradient method (FFT-CGM)

and the finite-difference time-domain (FD-TD) method.

Here, these two methods are evaluated for their ability to

solve the 2-D problem of an infinite lossy dielectric cylin-

der exposed to both TM and TE incident polarizations.

Two-dimensional problems were chosen for two reasons.

First, 2-D problems are less computationally involved than

3-D problems. This allows many test runs to be made for a

variety of dielectric properties, frequencies, and cylinder

sizes. Second, analytic solutions exist for homogeneous

and coaxially layered circular cylinders illuminated by TM

and TE incident plane waves. This allows a direct check on

the accuracy to which the numerical methods can predict

the internal electric fields.
The first method developed to solve the electric-field

integral equation for the general 2-D dielectric cylinder

was Richmond’s [6], [7]. This approach uses the method of

moments (MoM) with the pulse basis and point matching

to discretize the integral equation into a linear system of

equations that is then solved by matrix inversion. This

method was extended to the general 3-D problem by

Livesay and Chen [8] and has been applied to realistic

models of man by Hagmann et al. [9]. A serious limitation

of the traditional MoM is the need to invert a large matrix

equation. This requires order N 3 computation and order

N 2 storage, where N is the number of pulse-basis func-

tions (cells) used to describe the body. This has limited the

application of this method to relatively crude 180–1100-cell

models [10].

In order to extend the resolution of the models that can

be used in the integral equation method, Bojarski [11]

developed the K-space method, which exploits the con-

volutional form of the electric-field integral equation by

the use of the fast-Fourier-transform (FFT) algorithm.
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This iterative approach reduces the storage and computa-

tion per iteration requirements to order N and N Iogz (N),

respectively. A related method, the stacked spectral itera-

tion method (SSIT) of Kastner and Mittra [12], further

reduces the computation requirement by decomposing the

3-D problem into a stack of 2-D problems. Difficulties

associated with the convergence of these iterative methods

prompted the development of the FFT-CGM [13], [14]. In

this approach, the MoM with pulse basis and point match-

ing is used to discretize the integral equation into a linear

system that inherits the convolutional form of the integral

equation. The linear system is then solved iteratively by

the conjugate gradient method [15] using the discrete con-

volution theorem and the FFT algorithm to maintain order

N storage and order N logz (N) computation per iteration

requirements.

A recent debate [16], [17] concerning the accuracy of

pulse-basis MoM (PB-MoM) solutions has cast serious

doubt on the applicability of this method to biological

problems. Because the FFT-CGM is nothing more than an

efficient means of solving the PB-MoM linear system, it is

also suspect. It will be demonstrated in this paper that

serious errors result when the FFT-CGM is applied to the

2-D lossy dielectric cylinder exposed to the TE incident

polarization, while for the TM case, very accurate solu-

tions are obtained. A major purpose of this paper is to

explain the source of this problem by presenting a mod-

ified PB-MoM that provides excellent solutions for the TE

case. Unfortunately this modified approach does not allow

for the use of the FFT and thus requires order N2 storage

and order N 3 computations. In addition, the modified

PB-MoM requires detailed modeling of all dielectric inter-

faces. This complicates the creation of the model consider- ‘

ably compared with the simple volume-averaged models

that have been used. Nonetheless, the success of this

method illuminates the source of the problems that have

been encountered in the application of the PB-MoM and

casts serious doubt on the solutions obtained in the past

for simple block models of man.

The FD-TD method originated by Yee [18] and ex-

tended by Umashankar, Taflove, and Morris [19], [20]

consists of solving a set of finite difference approximations

to the time-dependent Maxwell’s equations. The method

enjoys significant advantages over the FFT-CGM in terms

of computation and storage requirements and will be

shown to provide excellent solutions for both the TM and

TE polarizations. In addition, the FD-TD method does not

require accurate modeling of the dielectric interfaces. The

ability of this method to solve high-resolution biological

models has been demonstrated in the application of the

method to a realistic model of the isolated human eye [21].

Based on the results to follow, we feel that the FD-TD

method is superior to the FFT-CGM for solving high-reso-

lution bioelectromagnetic problems.

H. DESCRIPTION OF THE METHODS

The FD-TD method consists of solving a set of finite

difference approximations to the time-dependent Maxwell’s

equations. A plane wave, initially not touching the body, is

‘t

Fig. 1. Geometry of the 2-D TE cylinder problem and the constant
increment discretization grid used in the FFT-CGM.

propagated toward the body by time stepping with the

finite difference equations. The wave is followed as it

interacts with the body until the sinusoidal steady state is

reached. Satisfaction of the radiation condition is equiv-

alent to ensuring that the scattered field is not reflected

back toward the body by the boundaries of the grid. This

boundary condition is enforced by applying a finite dif-

ference operator at the grid boundary that selects

outward-moving waves [22]. Use of this second-order-accu-

rate boundary condition is claimed to ensure +2.5-percent

uncertainty in the internal field magnitudes [20]. The

FD-TD calculations presented in this paper were per-

formed using a computer program provided by A. Taflove.

A detailed description of the theory of the FD-TD method

and the program can be found in [23].
The FFT-CGM is described in [13] and [14] for the TM

illumination of infinite dielectric cylinders and we derive

here the method for the TE incident polarization. In Fig. 1,

an infinite cylinder of arbitrarily inhomogeneous, lossy

dielectric material of constant cross section S is il-

luminated by a TE-to-z incident field. From Maxwell’s

equations with exp (jut) time dependence, the 2-D TE

electric-field integral equation can be derived as in

Barrington [24, p. 59]:

.Hf2)(kol~– ~1) ds’ (1)

where

transverse total electric field,

transverse incident electric field,

complex relative permittivity,

free-space propagation constant.

Suppose that the cross section is composed of N homo-

geneous subregions. The divergence of the polarization

current in the second integral is zero inside such a region

and impulsive at dielectric interfaces. This collapses the

second integral into a line integral around all dielectric
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interfaces, giving [33]

where

E*
n complex relative permittivity of region n,

A outward-directed unit normal. vector,

Sn surface area of region n,

C. boundary of region n.

(2)

The FFT-CGM is based on the observation that the 2-D

electric-field integral equation (1) has the form of a 2-D

convolution integral. The idea is to discretize the equation

385

In other words, since an equally spaced square grid has

been used to discretize (l), the resulting linear system has

inherited the convolutional form of the integral equation.

The first integral in (3) is approximated by replacing the

square cell by a circle of equal area and evaluating the

integral analytically. If the second integral is approximated

in the same way, then the resulting method is equivalent to

that originally used by Richmond [7] for the TE cylinder

problem. It has been suggested by Hohmann [25] that the

second integral should be evaluated by numerical quadra-

ture along the square boundary. We have found, as dis-

cussed by Hagmann et al. [261 for the 3-D case, that

subdivision of ~he cell into smaller cells and summing the

Richmond approximations for these subcells converge to

the values obtained by Hohmann’s approach with less

computational effort. This formulation is referred to in the

literature [26] as the high-frequency Hohmann method

(HFH) since it is a high-frequency modification of a

method originally used by Hohmann [25] for geophysical

problems.

Upon approximating the integrals in (3), the linear

system can be written in the form

in such a way as to preserve this form in the resulting

linear system obtained by the application of the method of

moments using the pulse basis and point matching. To this

end, a square grid of constant increment A, is placed over

the surface S, as shown in Fig. 1. If the electric field and

dielectric properties in each cell are assumed to be con-

stant (pulse basis) and equality is enforced at the cell

centmids (point matching), then there results from (2) the

linear system of equations

HEx(l, k)
— ;Vxx(ci–1)

[k
Ey(l, k)

where

SA surface area of a cell centered at the origin,

CA boundary of SA.

The linear system (3) is in the form of a 2-D discrete

convolution since

lpn~ – ~lk – ~1

=~((n-/)A -x’)2+((nz -k) A-y’)2. (4)

In this form, the linear system is clearly seen to be of the

form of four coupled 2-D discrete convolutions. This form

can be exploited by use of the discrete convolution theo-

rem and, the 2-D FFT algorithm to provide a means of

computing the matrix product and its conjugate transpose

in a number of operations proportional to N log2 (N)

versus N 2 for direct summing, where N is the number of

cells used to model the body. In addition, matrix storage is

not needed since only the FFT’s of the arrays A, B and C

need to be stored. This reduces the storage requirement

from order N’ for traditional MoM to order N. This

efficient means of computing the matrix products is then

used to implement the conjugate gradient method (CGM)

for the iterative solution of the linear system (5). This

method of solving (5) introduces no additional error over

more traditional methods such as LU decomposition since

the convolutions in (5) can be computed without wrap-

around aliasing by zero padding to twice the dimension of

the scatterer [27, p. 110]. Recently, the CGM has become a

popular means for solving linear systems encountered in

the application of the MoM [28]–[30]. In these methods,

the convolutional property of the linear system is not

exploited by use of the FFT algorithm, and as a result,

these methods require order N 2 computations per iteration

and order N 2 storage. It should be mentioned that the

CGM approach proposed by Sultan and Mittra [30] re-

quires order N 2 computations but a storage requirement

proportional to N since the matrix elements are extracted

from a lookup table as needed.

Table I summarizes the storage and computation re-

quirements of the FFT-CGM and the FD-TD method for

the TE case. The FD-TD requires about 10 percent of the
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TABLE I
STORAGE AND COMPUTATION COMPARISON FOR THE 2-D TE CASE

FIT-CGM Fr3-’rTr

Multiplies 64N log*(N) 2N

Adds 64N log,(N) 10N

Storage d4N 7N

Computations for the FFT-CGM are for one CGM iteration. The
FD-TD values are for one time step. N is the number of cells used in the
model.

storage needed by the FFT-CGM. Also, considerably less

computation per iteration is needed for the FD-TD method.

The comparison presented in Table I is not entirely accu-

rate since the computations for the FFT-CGM are for one

conjugate gradient iteration while the values for the FD-TD

are for one time step. For the test cases to follow, the

number of iterations and time steps needed will be given

for a more accurate comparison of the methods.

III. TEST CASES

Fig. 2 illustrates the model used in the test cases that

follow. A coaxially layered circular cylinder is modeled by

a 21 X 21 square grid with an inner layer defined by an

11x 11 grid for a total of 349 cells. Also shown are the TM

and TE incident plane wave polarizations considered. Fig.

3 compares the results obtained with the FFT-CGM and

the FD-TD method for the case of a homogeneous muscle

tissue cylinder exposed to a 1OO-MHZ TM polarized plane

wave of amplitude 1 V/m. The values for the dielectric

properties of biological tissue were taken from [31]. The

solutions are compared with the exact solution along the x

axis from front to back and on the y axis from the center

to the top of the cylinder (the solution is symmetric in y).

The exact solution represented by the continuous line was

computed analytically as described in [32]. Both numerical

solutions agree favorably with the exact solution for this

case.

Fig. 4 shows the results for a two-layer cylinder with an

inner layer of muscle and an outer layer of fat for an

incident frequency of 100 MHz. Fig. 5 shows the compari-

son for a homogeneous muscle cylinder for a frequency of

300 MHz. For these cases also, both methods agree well

with the exact solution.

The TM results displayed here represent only a small

sample of the cases that have been considered. We have

found that both methods give good solutions for the TM

polarization for a wide variety of layering geometries and

frequencies up to 1 GHz. The sampling density required to

obtain an accurate solution is on the order of five to ten

samples per internal wavelength.

Fig. 6 compares the two methods for the case of a

1OO-MHZ TE polarized incident plane wave illuminating a

homogeneous muscle cylinder. As before, the methods are

TE

TM

Fig. 2. Geometry of the layered circular cylinder test case. Outer layer
radius =15 cm, inner layer radius = 7.9 cm.

TABLE II
ITERATION AND COMPUTATION REQUIREMENTS FOR THE TEST

PROBLEMS OF FIGS. 3-8

Frequency FIT-CGM FST-CGM m-m Fr-’m
.md Fig. Iterations Ope;e Time-sreps OFefaona

Polarization

103MHz
TM F1g.3 4 1.8 1500 18.4

Homogeneous

I08mz
TM Fig.4 5 2.3 1500 18.4

Layered

3Kl MHz
TM Fig.5 9 4.1 300 3.7

Homogeneous
lCOMRZ

TE Fig.6 3cil 550 150Q 18.4
Homogeneous

The operations values are the sum of the real adds and real multiplies.

compared with the exact solution along the x and y axes.

The Ex field is zero on the x axis due to symmetry. For

this case, the FD-TD solution agrees very favorably with

the exact solution. In contrast, severe errors are present in

the FFT-CGM solution. Notice the erratic behavior of the

solution in general and in particular the large errors in the

tangential components at the air-dielectric interface.

Fig. 7 shows the TE results obtained for the muscle–fat

layered case. An interesting feature of this case is the fact

that both methods correctly predict the jump discontinuity

in Ey along the y axis. As before, the FD-TD solution is

superior to the FFT-CGM solution. As in the homoge-

neous case, the FFT-CGM solution is not as smooth as the

FD-TD solution, and there is considerable error in the

tangential component of the solution at both dielectric

interfaces. Notice that the FFT-CGM method predicts

large discontinuities in the tangential component of the

field at dielectric interfaces. Fig. 8 shows the comparison

for the 300-MHz homogeneous case. Again the FD-TD

solution agrees very well with the exact solution. Very

large errors are seen for the FFT-CGM solution. Notice

the very erratic, oscillatory behavior of the computed Ey

field on the x axis. An explanation of this behavior will be

given shortly.
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Table II displays the number of FFT-CGM iterations

and FD-TD time steps and the total number of real

operations required to obtain the solutions of Figs. 3–8.

For numerical stability of the FD-TD iterations, the time

step duration tit must satisfy

where 8X is the cell size and Co is the velocity of light. For

adequate convergence to the steady state, the passage of

two to three wavelengths is required and so the total

number of time steps needed (for 2.5 wavelengths) is

N>;.
x

Thus, the number of time steps needed for convergence is

inversely proportional to the electrical size of the cell. For
this reason, the FD-TD method requires fewer time steps

as the frequency is increased for a given cell size.

While the number of time steps required for the FD-TD

method to converge is known a primi from simple consid-

erations, the number of iterations required for the FFT-

CGM is not so well defined. For the TM case, the CGM
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converges very rapidly in far fewer iterations than the

number of unknowns, making the FFT-CGM competitive

with the FD-TD for this polarization. For the TE case,

however, the CGM requires a number of iterations on the

order of the number of unknowns. It is well known that

the number of iterations needed for convergence of the

CGM is equal to the number of independent eigenvalues

of the matrix [28]. Apparently, many of the eigenvalues of

the TM matrix are degenerate or nearly so, resulting in

very rapid convergence. For the TE matrix, it appears that

the eigenvalues are mostly independent, thus, the number

of iterations required is on the order of the number of

unknowns. This, coupled with the greater computation per

iteration required, makes the FFT-CGM much less effi-

cient than the FD-TD method for the 2-D TE and, pre-

sumably, the 3-D cases.

In order to shed some light on the convergence problems

encountered in the use of the pulse-basis MoM approach

to the TE problem, a series of increasingly finer discretiza-

tions of the type shown in Fig. 2 were considered. Fig. 9



BORUP et (d.: COMPARISON OF METHODS FOR 2-D ABsORPTION PROBLEM
389

0.20

0.16

L<

A m.m

() FFT-CGM

E *O -– exact
,012
> 0

c..! o
=008~. o 00000 00

0 0
0 0

0.04 0
0 00

0.00
-0.15 -0.10 –0.05 0.00 0.05 0.10 0.15

x–axis

0“10r—————1
{
> uog 0.05 0 000

K o 0
g

o 0

0.00
AA

0,00 005 0.10 0.15
y–axin

0.10mo
.?3 o

:
0

000 0
g 0.05 0
x
g o

0

0.00
0.00 0.05 0.10 0.15

y-axis

Fig. 8. TE test case no. 3. Homogeneous muscle cylinder. Frequency= 300 MHz; C,I = C,2= 54: UI = U2= 1.4 S/m

o OO.+
0.1 0.2 (

x—axis
) 0,05 0.10 0

y–axis

L I . I

I

exact SAR = 1.01 mWtm 3

15

04.0
x ‘o6 ox WA

ox
x o

.W 0
x

&

o

x
*

0.00
0.00 0.05 0.10 0.15’

y–nxis

Fig. 9. Discretization series test easesfor the FFT-CGM. Frequency = 100 MHz, radius= 15 cm, Cr= 72, 0 = 0.9 S/m.



390 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-35, NO. 4, APSUL 1987

A

A

x

0001 J
0.0 0.1 0.2 0.3

x—axis

Symbol # cells &lA SAR mWlm 3

0 45 6.3 4.62

201 13.5 1.42

: 453 20.7 1.25

x 801 27.9 1.20

exact SAR = 1.02 mWlm 3

I

E
:

0,00 ~
0.00 0.05 (

y– axis

“or_——_
I 0

1 AA

e h

>
0

& 9~xQ

/
#

g 0.05 ,0’ x

15

L o

8’ A
x

!2

~o

0.00
0.00 0.05 0.10 0.15

y–axis

Fig. 10. Volume-averaged discretization series test cases for the FFT-CGM. Frequency= 100 MHz, radius= 15 cm, C,= 72,
0 = 0.9 S/m.

shows the results obtained for 37, 177, 421, and 749 cell

block models of a homogeneous circular cylinder of muscle

tissue exposed to a 1OO-MHZ TE plane wave. As the

number of cells is increased, the model is refined in

the sense that the surface area of the model converges

to the area of the circular cross section. Note, however,

that the arc length and shape of the boundary do not

converge to that of the circular cylinder for increasingly

finer discretizations. This inaccurate modeling of the

air-dielectric interface will be shown in the next section to

be the cause of the errors encountered in the previous TE

solutions.

It might be suggested that more rapid convergence of

the model geometry and correspondingly better solutions

might be obtained by replacing the block model of Fig. 2

with an air-dielectric volume-averaged model. In Fig. 2, a

cell was considered to be either entirely inside or outside

the body, and it could be argued that this reinforces the

jagged shape of the model boundary. A different approach

would be to assign to each cell a dielectric constant corre-

sponding to the average dielectric constant enclosed by the

volume of the cell. This volume-averaging approach is

actually what has been used in practice. For example, the

180-cell man model developed by Hagmann et al. [9] is a

volume-averaged model. To test the effect of this modifica-

tion, volume-averaged models for the TE problems of Fig.

9 were considered. Fig. 10 shows the results obtained using

volume averaging. These solutions differ only slightly from

those of Fig. 9. The characteristics and magnitude of the

error in the volume-averaged solutions are essentially the

same as for the model of Fig. 2. Thus, we find no benefit

in this modification.

Careful’ examination of Figs. 9 and 10 reveals several

interesting features of the block model MoM solutions.

Notice that as the number of cells is increased, the solution

tends to converge to a final shape. In addition, the whole-

body average SAR tends to converge to a value about 25

percent larger than the exact value. Although the MoM

solutions do appear to converge to a final shape and the

SAR seems to converge to a value close to the correct one,

the solutions deviate significantly from the exact solution
in terms of the interior distribution even though the sam-

pling density has reached 28 samples per internal wave-

length. This result indicates that the apparent convergence

of the whole-body average SAR is not an indication that

the internal SAR distribution is accurate.

The source of the overall roughness of the solutions in

Figs. 9 and 10 can be explained by considering the results
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Fig. 11. Square cylinder discretization series test cases for the FFT-CGM. Frequency= 100 MHz, width= 30 cm, (r= 72,
u = 0.9 S/m.

in Fig. 11 for square cylinders. The only difference be-

tween the models used in Fig. 11 and Fig. 9 is that the

circular cylinder block models have been filled out into

squares—a shape that the square-cell block models fit

exactly in area, boundary shape, and boundary length.

Notice that the MoM solutions are now very smooth.

Clearly, the source of much of the erratic behavior of the

previous TE results is due to the inaccurate modeling of

the dielectric boundary by the block models. To see why

this is true, consider (2) for the case of a single homoge-

neous region. The second integral in this equation becomes

a single line integral about the boundar? of the body. This

suggests that the integral equation solutlon is very sensitive

to the accuracy of the boundary representation. Block

models, such as Fig. 2, converge in terms of surface area as

the number of cells is increased but the arc length and

shape of the boundary does not. The second integral in (2)

is an integration of the polarization charge at the interface

between two different dielectrics. It is this charge that

accounts for the jump discontinuity y in the normal compo-

nent of the electric field at such an interface; thus, the

geometry of the boundary must be modeled accurately to

ensure proper satisfaction of this boundary condition.

The shortcomings of the pulse-basis MoM applied to the

TE-illuminated dielectric cylinder were first pointed out by

Barrington [24, p. 59] in a discussion of the results ob-

tained by Richmond 17] for the TE cylinder problem.

Barrington suggested that the errors encountered in com-

puting the scattered power pattern of a coaxial dielectric

shell were due to the fact that the pulse-basis function is

not in the domain of the TE integro-diffei-ential operator.

He further suggested that the pulse-basis solution should

not be expected to converge to the exact solution as the

number of pulses describing the cylinder is increased. In

the next section, it will be shown that convergence can in

fact be obtained with the pulse basis if the cell structure of

the model is carefully designed and the matrix elements

are evaluated correctly.

A number of alternative formulations have been sug-

gested to alleviate these difficulties. These approaches gen-

erally involve the use of higher order basis functions, e.g.

linear and rooftop functions. Hill et al. [33] developed a

linear basis Galerkin method for a quasi-static approxima-

tion to the TE electric-field integral equation. This ap-

proach was found to yield excellent solutions for homoge-

neous and coaxially layered cylinders of biological tissue.
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Recently, this approach has been extended to the general

3-D problem by Tsai [34]. Solutions obtained with this

method have been found to agree well with the exact

solution for homogeneous and concentrically layered

spheres. Another method, developed by Schaubert et al.

[35], uses the so-called rooftop functions which are linear

in the normal direction and constant tangentially. This

allows the normal ~ continuity to be enforced by con-

straint. The solutions obtained for spheres with this method

are considerably superior to block model solutions. Two

points stressed in these papers -are that one, the cell

structure of the model should accurately represent the

dielectric interfaces and two, the linear basis is superior to

the pulse basis in that it is capable of approximating the

cell-to-cell boundary conditions more accurately. Both of

these methods suffer, however, from two important limita-

tions. The larger number of unknowns per cell results in a

very large matrix equation to be solved. This makes the

solution of high-resolution biological models beyond the

reach of present-day computers. The other complication

involves the creation of the model itself. The need to

model interfaces accurately requires that the cell structure

fit the complicated shape of the exterior boundary and the

interior organs using arbitrary polyhedral cells. Specifica-

tion of such a model thus requires a great deal of effort

compared with the simple volume-averaged block models.

At present, this appears to us to be a fundamental limita-

tion of integral equation approaches. The FD-TD method,

in contrast, does not seem to require accurate boundary

specification. For this method, specification of the dielec-

tric properties on a regular grid of points seems to be

sufficient information to produce accurate solutions. In the

next section, two modifications are made to the pulse-basis

block model MoM that have been found to alleviate the

convergence problems without going to a higher order

basis function.

IV. A MODIFIED PULSE-BASIS MoM (MHFH)

To support the previous conjectures regarding the cause

of the poor performance of the pulse-basis block model

MoM, we now present two modifications that we have

found to alleviate this problem for the TE case. The first

modification was suggested in the last section—replace the

block model with a model composed of irregularly shaped

cells so that the curved boundaries are modeled accurately.

An example of this improvement is shown in Fig. 13 for a

circular cylinder. Two serious disadvantages resulting from

this modification are one, as discussed previously, the

creation of such models is considerably more difficult than

the block models, and two, since the discretization grid is

no longer square and of constant increment, the linear

system no longer inherits the convolutional form of the

integral equation. Thus, the discrete convolution theorem

cannot be used and the order N 2 storage and order N 3

computation of matrix inversion are required. The second

modification involves the accurate numerical evaluation of

the second integral in (2). This integral represents an

integration of the polarization charge that exists at the

interface bet ween two homogeneous regions with different

dielectric properties. It is this polarization charge that

accounts for the discontinuity of the normal component of

the electric field at the interface. If a homogeneous region

is subdivided into N subregions and the line integrals are



BORUP eta[.: COMPARISON OF METHODS FOR 2-D ABF,ORPTION PROBLEM 393

.’

0 15 -— -- ----T--—- ------ 1- ----- -–—

\

l\0
010 ~

E

. . . .-
x -axis - -

(1 10

E
.>,

goorl
--
G

000
()

[

_.r._..,.——-._.

o

>
-l... —

00 ““ 005 ‘- 0 10 0 15
y-axis

() 15

010
<
>
~
.

g
005

,- -- -, --

000
0.00 005 010 015

y-axis

Fig. 13. Smooth model HFH and MHFH solutions versus the analytic solution. Frequency= 300 MHz, radius= 15 cm,
c,= 54, u =1.4 S/m.

o

0

E
>

~o

0

0

x #lxls

E 04

.:
~

J 02

D
AA AA

00
000 0 or] o 10 n 15

y axis

06 ~-—-—.——

Cj

~

02

Ii

A

00 *
000 005 010 0

y rlxls
Is

Fig. 14. Coaxially layered muscle-fat model and MHFH solution. Frequency= 300 MHz. Inner layer: radius= 9.4 cm,
c,= 54, u==1.4 S/m. Outer layer: radius =15 cm, c,= 5.7, u = 0.05 S/m.



394 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-35, NO. 4, APRIL 1987

performed About the subregion boundaries, the continuity

of normal E at the interface between two such subregions

will ensure that the two integral contributions cancel so

that the charge source exists only at the air–dielectric

interface. The problem with the pulse basis is that, due to

the assumption of constant fields, a jump discontinuity

exists at all cell boundaries regardless of whether an actual

dielectric discontinuity exists. This results in the presence

of fictitious charge sources in the interior of the homo-

geneous regions. The second suggested modification is

to ignore this deficiency of the pulse basis by simply

not including the line integral contributions from cell

boundaries for which there is not an actual dielectric

discontinuity. Henceforth, this second modification shall

be referred to as the modified high-frequency Hohmann

method (MHFH) to differentiate it from the high-frequency

Hohmann method (HFH) which includes the fictitious

charge sources.
To examine the effects of these modifications, consider

Fig. 12. Shown is a 208-cell block model of a homogeneous

circular cylinder. One plane of symmetry has been used (as

illustrated in the figure) to reduce the matrix size. The

linear systems resulting from the HFH and MHFH were

inverted by LU decomposition. The plots compare the two

solutions with the exact solution as in previous examples.

Notice that both solutions deviate significantly from the

exact solution. Thus, the remova~ of fictitious charge alone

is not sufficient to correct the solution.

Fig. 13 shows a smooth model created to satisfy the first

suggested modification. The plots compare the solutions

obtained with the HFH and MHFH methods. Clearly,

modification of the boundary shape alone is not sufficient

to correct the errors in the MoM solution. Notice, how-

ever, that if both modifications are made, the MoM solu-

tion agrees with the exact solution with very little error.

For an inhomogeneous test case, a 212-cell model of a

coaxially layered circular cylinder was created, as shown in

Fig. 14. Notice that both the exterior air–dielectric inter-

face and the interior layer interface are accurately repre-

sented by the model. For the solution shown, the inner

layer was assumed to be muscle surrounded by an outer

layer of fat. Such a discontinuity represents the most

severe case found in the human body. As in the homoge-

neous case, the MHFH method yields excellent agreement

with the analytic solution. Note in particular the ability of

the method to predict the large discontinuity in the Ey

field at the interface along the y axis.

V. CONCLUSIONS

It has been shown that serious errors exist in solutions

obtained using the HFH-MoM applied to block models of

Iossy dielectric cylinders for the TE polarization. The cause

of these errors and their remedy have been demonstrated

by the development of a modified HFH-MoM. In this

method, the cell structure is designed to accurately model

all dielectric interfaces. Also, the fictitious line charge

sources present in the traditional HFH-MoM have been

removed. Unfortunately. these modifications rsreven t the

resulting linear system of equations from inheriting the

convolutional form of the TE integral equation. This pre-

vents the use of the FFT-CGM and thus requires the order

N2 storage and order N3 computation of matrix inversion.

Also, the need to include accurate interface modeling

drastically increases the effort required to create models of

complicated inhomogeneit y as opposed to the simple

volume-averaged models used in the past.

In contrast, the FD-TD method has been shown to yield

excellent solutions for both the TM and TE polarizations

without the need for accurate boundary information. This

fact, coupled with the extreme efficiency in storage and

computation requirements, suggests that the FD-TD

method has great potential for solving the high-resolution

models needed in bioelectromagnetics.
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